CSC D70: Compiler Optimization Dataflow Analysis

Prof. Gennady Pekhimenko University of Toronto Winter 2020

The content of this lecture is adapted from the lectures of Todd Mowry and Phillip Gibbons

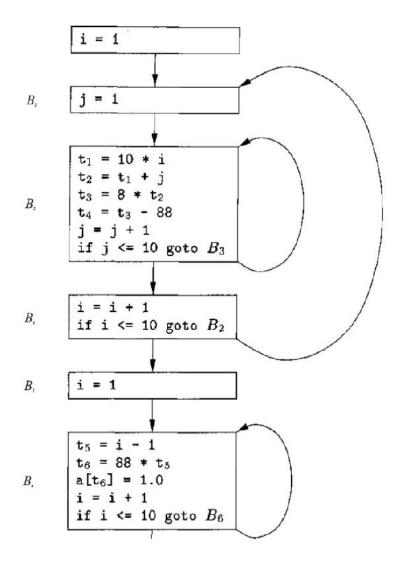
Refreshing from Last Lecture

• Basic Block Formation

• Value Numbering

Partitioning into Basic Blocks

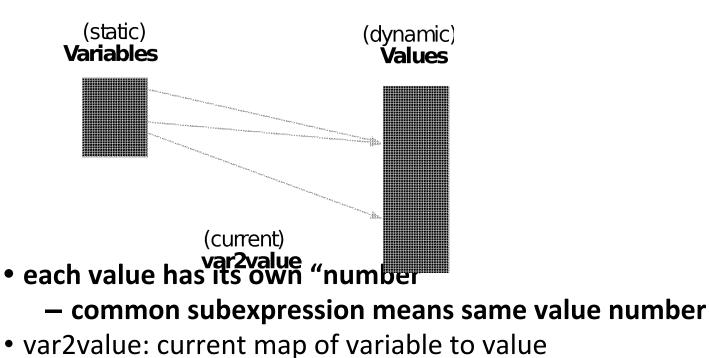
- Identify the leader of each basic block
 - First instruction
 - Any target of a jump
 - Any instruction immediately following a jump
- Basic block starts at leader & ends at instruction immediately before a leader (or the last instruction)



ALSU pp. 529-531

Value Numbering (VN)

• More explicit with respect to VALUES, and TIME



used to determine the value number of current expression

r1 + r2 => var2value(r1)+var2value(r2)

Algorithm

```
Data structure:
    VALUES = Table of
       expression //[OP, valnum1, valnum2}
                      //name of variable currently holding expression
        var
For each instruction (dst = src1 OP src2) in execution order
 valnum1 = var2value(src1); valnum2 = var2value(src2);
  IF [OP, valnum1, valnum2] is in VALUES
    v = the index of expression
    Replace instruction with CPY dst = VALUES[v].var
  ELSE
     Add
       expression = [OP, valnum1, valnum2]
                   = dst
        var
     to VALUES
    v = index of new entry; tv is new temporary for v
     Replace instruction with: tv = VALUES[valnum1].var OP VALUES[valnum2].var
                               CPY dst = tv;
```

```
set_var2value (dst, v)
```

VN Example

Assign: $a \rightarrow r1, b \rightarrow r2, c \rightarrow r3, d \rightarrow r4$

- a = b+c; ADD t1 = r2,r3
- CPY r1 = t1 //(a = t1)
- b = a-d; SUB t2 = r1, r4
- CPY $r^2 = t^2 //(b = t^2)$ c = b+c; ADD t3 = r^2, r^3
 - CPY $r_3 = t_3$ //(c = t_3)
- d = a-d; CPY $r^2 = t^2$

Questions about Assignment #1

- Tutorial #2 today
 - More in-depth LLVM coverage

Outline

- 1. Structure of data flow analysis
- 2. Example 1: Reaching definition analysis
- 3. Example 2: Liveness analysis
- 4. Generalization

What is Data Flow Analysis?

- Local analysis (e.g., value numbering)
 - analyze effect of each instruction
 - compose effects of instructions to derive information from beginning of basic block to each instruction

• Data flow analysis

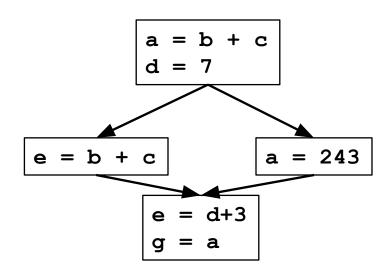
- analyze effect of each basic block
- compose effects of basic blocks to derive information at basic block boundaries
- from basic block boundaries, apply local technique to generate information on instructions

What is Data Flow Analysis? (2)

• Data flow analysis:

- Flow-sensitive: sensitive to the control flow in a function
- intraprocedural analysis
- Examples of optimizations:
 - Constant propagation
 - Common subexpression elimination
 - Dead code elimination

What is Data Flow Analysis? (3)



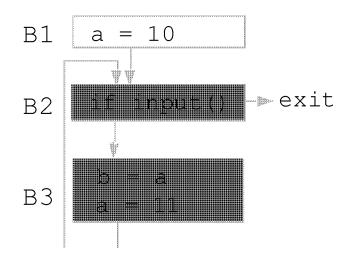
For each variable x determine:

Value of x?

Which "definition" defines x?

Is the definition still meaningful (live)?

Static Program vs. Dynamic Execution



- Statically: Finite program
- **Dynamically**: Can have infinitely many possible execution paths
- Data flow analysis abstraction:
 - For each point in the program: combines information of all the instances of the same program point.
- Example of a data flow question:
 - Which definition defines the value used in statement "b = a"?

Effects of a Basic Block

- Effect of a statement: **a** = **b**+**c**
 - Uses variables (b, c)
 - Kills an old definition (old definition of a)
 - new **definition** (a)
- Compose effects of statements -> Effect of a basic block
 - A locally exposed use in a b.b. is a use of a data item which is not preceded in the b.b. by a definition of the data item
 - any definition of a data item in the basic block kills all definitions of the same data item reaching the basic block.
 - A locally available definition = last definition of data item in b.b.

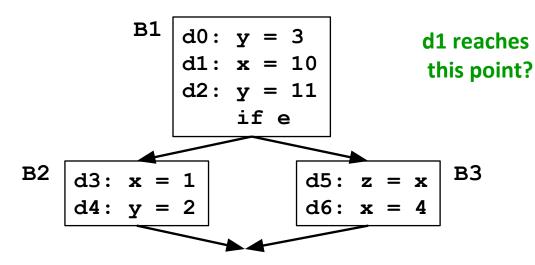
Effects of a Basic Block

A **locally available definition** = last definition of data item in b.b.

t1 = r1+r2	Locally exposed uses? r1	
r2 = t1		
t2 = r2 + r1	Kills any definitions?	Any other
r1 = t2		definition
t3 = r1*r1		of t2
r2 = t3		
if r2>100 goto	L1	

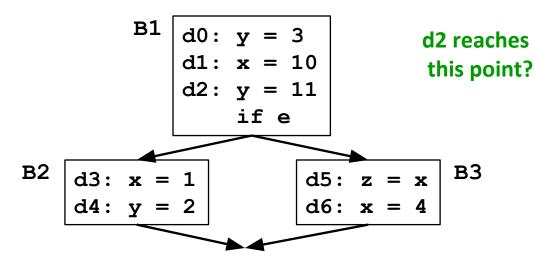
Locally avail. definition? t2

Reaching Definitions



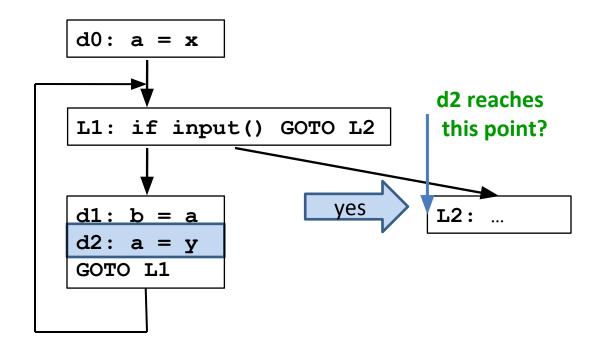
- Every assignment is a **definition**
- A definition d reaches a point p if there exists path from the point immediately following d to p such that d is not killed (overwritten) along that path.
- Problem statement
 - For each point in the program, determine if each definition in the program reaches the point
 - A bit vector per program point, vector-length = #defs

Reaching Definitions (2)

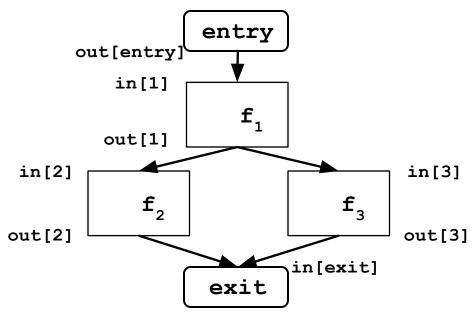


- Every assignment is a **definition**
- A definition d reaches a point p if there exists path from the point immediately following d to p such that d is not killed (overwritten) along that path.
- Problem statement
 - For each point in the program, determine if each definition in the program reaches the point
 - A bit vector per program point, vector-length = #defs

Reaching Definitions (3)

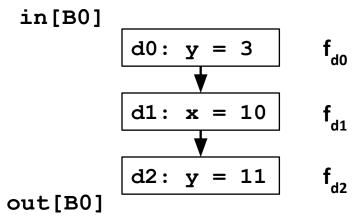


Data Flow Analysis Schema



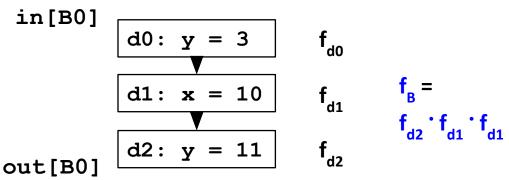
- Build a flow graph (nodes = basic blocks, edges = control flow)
- Set up a set of equations between in[b] and out[b] for all basic blocks b
 - Effect of code in basic block:
 - Transfer function f_b relates in[b] and out[b], for same b
 - Effect of flow of control:
 - relates out[b₁], in[b₂] if b₁ and b₂ are adjacent
- Find a solution to the equations

Effects of a Statement



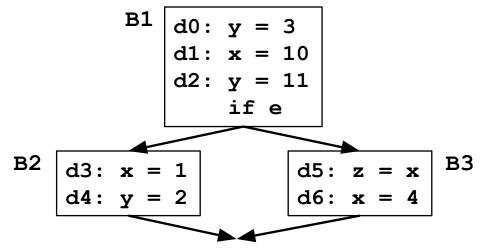
- f_c: A transfer function of a statement
 - abstracts the execution with respect to the problem of interest
- For a statement s (d: x = y + z) out[s] = f_s(in[s]) = Gen[s] U (in[s]-Kill[s])
 - Gen[s]: definitions generated: Gen[s] = {d}
 - Propagated definitions: in[s] Kill[s], where Kill[s]=set of all other defs to x in the rest of program

Effects of a Basic Block



- Transfer function of a statement s:
 - out[s] = f_s(in[s]) = Gen[s] U (in[s]-Kill[s])
- Transfer function of a basic block B:
 - Composition of transfer functions of statements in B
- $out[B] = f_B(in[B]) = f_{d2}f_{d1}f_{d0}(in[B])$ = $Gen[d_2] \cup (Gen[d_1] \cup (Gen[d_0] \cup (in[B]-Kill[d_0]))-Kill[d_1])) -Kill[d_2]$ = $Gen[d_2] \cup (Gen[d_1] \cup (Gen[d_0] - Kill[d_1]) - Kill[d_2]) \cup in[B] - (Kill[d_0] \cup Kill[d_1] \cup Kill[d_2])$
 - = Gen[B] U (in[B] Kill[B])
 - Gen[B]: locally exposed definitions (available at end of bb)
 - Kill[B]: set of definitions killed by B

Example

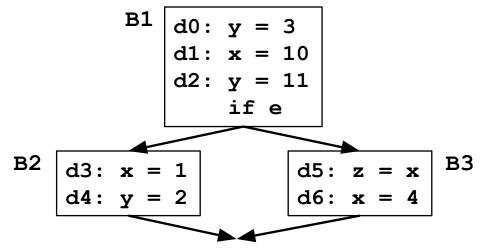


 a transfer function f of a basic block b: OUT[b] = f (IN[b])
 incoming reaching definitions -> outgoing

incoming reaching definitions -> outgoing reaching definitions

- A basic block b
 - generates definitions: Gen[b],
 - set of locally available definitions in b
 - kills definitions: in[b] Kill[b], where Kill[b]=set of defs (in rest of program) killed by defs in b
- out[b] = Gen[b] U (in(b)-Kill[b])

Example

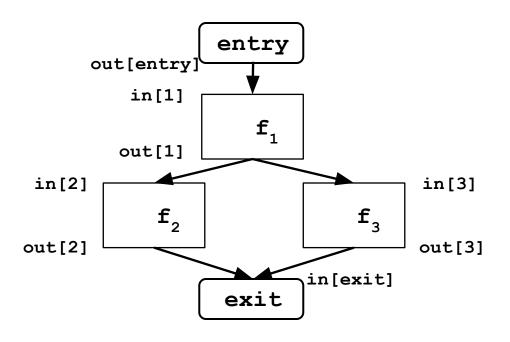


 a transfer function f of a basic block b: OUT[b] = f (IN[b])
 incoming reaching definitions -> outgoing

incoming reaching definitions -> outgoing reaching definitions

- A basic block b
 - generates definitions: Gen[b],
 - set of locally available definitions in b
 - kills definitions: in[b] Kill[b], where Kill[b]=set of defs (in rest of program) killed by defs in b
- out[b] = Gen[b] U (in(b)-Kill[b])

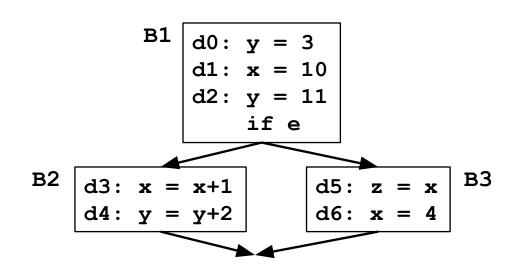
Effects of the Edges (acyclic)



- $out[b] = f_b(in[b])$
- Join node: a node with multiple predecessors
- **meet** operator:

in[b] = out[p_1] U out[p_2] U ... U out[p_n], where p_1 , ..., p_n are all predecessors of b

Example

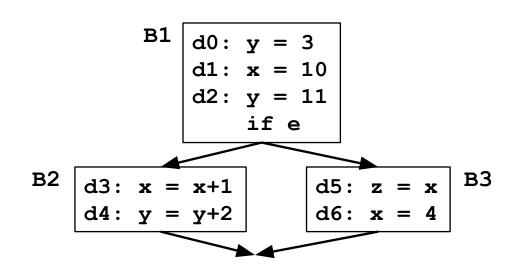


f Gen Kill
1 {1,2} {0,2,3,4,6}
2 {3,4} {0,1,2,6}
3 {5,6} {1,3}

- $out[b] = f_b(in[b])$
- Join node: a node with multiple predecessors
- **meet** operator:

in[b] = out[p_1] U out[p_2] U ... U out[p_n], where p_1 , ..., p_n are all predecessors of b

Example

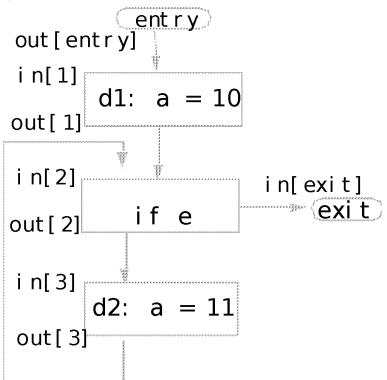


f Gen Kill
1 {1,2} {0,2,3,4,6}
2 {3,4} {0,1,2,6}
3 {5,6} {1,3}

- $out[b] = f_b(in[b])$
- Join node: a node with multiple predecessors
- **meet** operator:

in[b] = out[p_1] U out[p_2] U ... U out[p_n], where p_1 , ..., p_n are all predecessors of b

Cyclic Graphs



- Equations still hold
 - out[b] = f_b(in[b])
 - $in[b] = out[p_1] U out[p_2] U ... U out[p_n], p_1, ..., p_n pred.$
- Find: fixed point solution

Reaching Definitions: Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

```
// Boundary condition
  out[Entry] = Ø
```

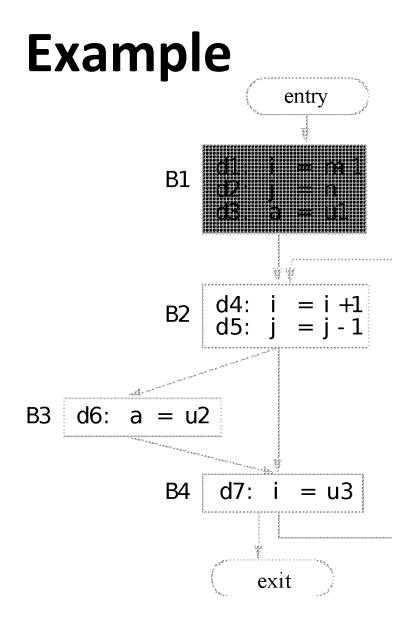
// Initialization for iterative algorithm
For each basic block B other than Entry
out[B] = Ø

```
// iterate
While (Changes to any out[] occur) {
    For each basic block B other than Entry {
        in[B] = U (out[p]), for all predecessors p of B
        out[B] = f<sub>B</sub>(in[B]) // out[B]=gen[B]U(in[B]-kill[B])
    }
```

Reaching Definitions: Worklist Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

```
// iterate
  While ChangedNodes ≠ Ø {
    Remove i from ChangedNodes
    in[i] = U (out[p]), for all predecessors p of i
    oldout = out[i]
    out[i] = f<sub>i</sub>(in[i]) // out[i]=gen[i]U(in[i]-kill[i])
    if (oldout ≠ out[i]) {
        for all successors s of i
            add s to ChangedNodes
    }
}
```



	First Pass	Second Pass
IN[B1]	000 00 0 0	000 00 0 0
OUT[B1]	111 00 0 0	111 00 0 0
IN[B2]	111 00 0 0	111 01 1 1
OUT[B2]	001 11 0 0	001 11 1 0
IN[B3]	001 11 0 0	001 11 1 0
OUT[B3]	000 11 1 0	000 11 1 0
IN[B4]	001 11 1 0	001 11 1 0
OUT[B4]	<mark>001</mark> 01 1 1	001 01 1 1
IN[exit]	001 01 1 1	001 01 1 1

Live Variable Analysis

• Definition

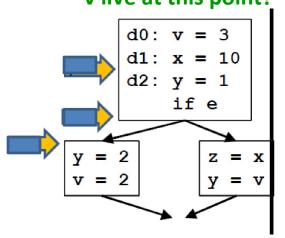
- A variable \mathbf{v} is **live** at point p if
 - the value of \mathbf{v} is used along some path in the flow graph starting at p.
- Otherwise, the variable is **dead**.

Motivation

• e.g. register allocation

```
for i = 0 to n
    ... i ...
for i = 0 to n
    ... i ...
```

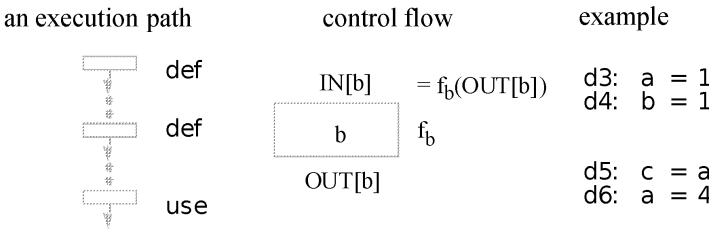
v live at this point?



- Problem statement
 - For each basic block
 - determine if each variable is live in each basic block
 - Size of bit vector: one bit for each variable

Transfer Function

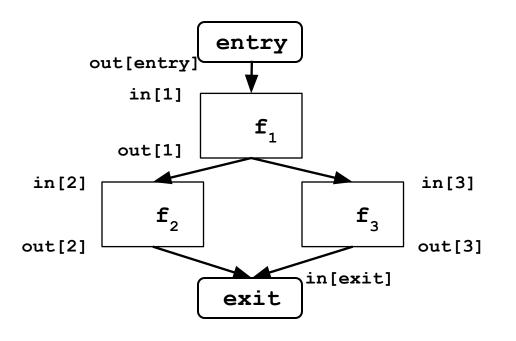
Insight: Trace uses backwards to the definitions



A basic block b can

- generate live variables: Use[b]
 - set of locally exposed uses in b
- propagate incoming live variables: **OUT**[b] **Def[b]**,
 - where Def[b] = set of variables defined in b.b.
- transfer function for block b: in[b] = Use[b] U (out(b)-Def[b])

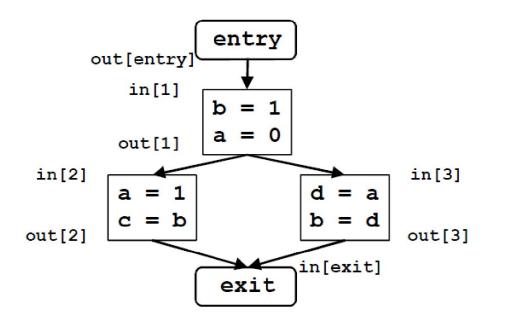
Flow Graph



- in[b] = f_b(out[b])
- Join node: a node with multiple successors
- meet operator:

out[b] = in[s₁] U in[s₂] U ... U in[s_n], where s₁, ..., s_n are all successors of b

Flow Graph (2)



f Use Def 1 {} {a,b} 2 {b} {a,c} 3 {a} {b,d}

- in[b] = f_b(out[b])
- Join node: a node with multiple successors
- meet operator:

out[b] = in[s₁] U in[s₂] U ... U in[s_n], where s₁, ..., s_n are all successors of b

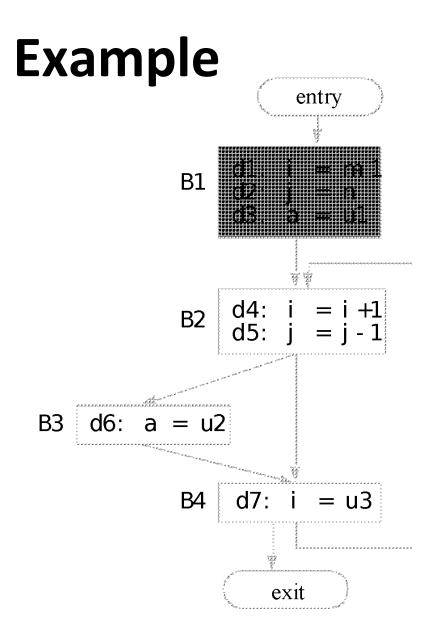
Liveness: Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

```
// Boundary condition
in[Exit] = Ø
```

// Initialization for iterative algorithm
For each basic block B other than Exit
in[B] = Ø

```
// iterate
While (Changes to any in[] occur) {
    For each basic block B other than Exit {
        out[B] = U (in[s]), for all successors s of B
        in[B] = f<sub>B</sub>(out[B]) // in[B]=Use[B]U(out[B]-Def[B])
    }
```



	First Pass	Second Pass
OUT[entry]	{m,n,u1,u2,u3}	{m,n,u1,u2,u3}
IN[B1]	{m,n,u1,u2,u3}	{m,n,u1,u2,u3}
OUT[B1]	{i,j,u2,u3}	{i,j,u2,u3}
IN[B2]	{i,j,u2,u3}	{i,j,u2,u3}
		(; , , , ,)
OUT[B2]	{u2,u3}	{j,u2,u3}
IN[B3]	{u2,u3}	{j,u2,u3}
OUT[B3]	{u3}	{j,u2,u3}
IN[B4]	{u3}	{j,u2,u3}
OUT[B4]	{}	{i,j,u2,u3}

Framework

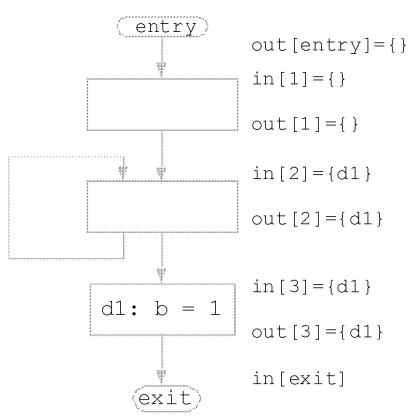
	Reaching Definitions	Live Variables
Domain	Sets of definitions	Sets of variables
Direction	forward: $out[b] = f_b(in[b])$ $in[b] = \land out[pred(b)]$	backward: in[b] = $f_b(out[b])$ out[b] = \land in[succ(b)]
Transfer function	$f_b(x) = Gen_b \cup (x - Kill_b)$	$f_b(x) = Use_b \cup (x - Def_b)$
Meet Operation (\wedge)	U	U
Boundary Condition	out[entry] = \emptyset	$in[exit] = \emptyset$
Initial interior points	out[b] = Ø	in[b] = Ø

Other examples (e.g., Available expressions), defined in ALSU 9.2.6

Thought Problem 1. "Must-Reach" Definitions

- A definition D (a = b+c) <u>must</u> reach point P iff
 - D appears at least once along on all paths leading to P
 - a is not redefined along any path after last appearance of D and before P
- How do we formulate the data flow algorithm for this problem?

Thought Problem 2: A legal solution to (May) Reaching Def?



• Will the worklist algorithm generate this answer?

Questions

Correctness

- equations are satisfied, if the program terminates.
- Precision: how good is the answer?
 - is the answer ONLY a union of all possible executions?
- Convergence: will the analysis terminate?
 - or, will there always be some nodes that change?
- Speed: how fast is the convergence?
 - how many times will we visit each node?

Foundations of Data Flow Analysis

- 1. Meet operator
- 2. Transfer functions
- 3. Correctness, Precision, Convergence
- 4. Efficiency

•Reference: ALSU pp. 613-631

•Background: Hecht and Ullman, Kildall, Allen and Cocke[76]

•Marlowe & Ryder, Properties of data flow frameworks: a unified model. Rutgers tech report, Apr. 1988

A Unified Framework

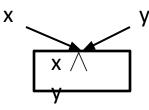
- Data flow problems are defined by
 - Domain of values: V
 - Meet operator (V ∧ V ? V), initial value
 - A set of transfer functions (V 2 V)

• Usefulness of unified framework

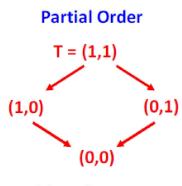
- To answer questions such as correctness, precision, convergence, speed of convergence for a family of problems
 - If meet operators and transfer functions have properties X, then we know Y about the above.
- Reuse code

Meet Operator

- Properties of the meet operator
 - commutative: $x \land y = y \land x$



- idempotent: $x \land x = x$
- associative: $x \land (y \land z) = (x \land y) \land z$
- there is a Top element T such that $x \land T = x$



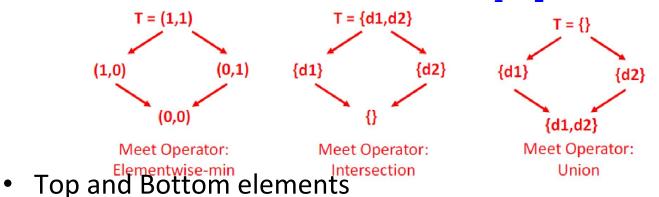
Meet Operator: Elementwise-min

• Meet operator defines a partial ordering on values

- $x \le y$ if and only if $x \land y = x$ (y -> x in diagram)
 - Transitivity: if $x \le y$ and $y \le z$ then $x \le z$
 - Antisymmetry: if $x \le y$ and $y \le x$ then x = y
 - Reflexitivity: $x \le x$

Partial Order

• Example: let $V = \{x \mid \text{such that } x \subseteq \{d_1, d_2\}\}, \land = \cap$

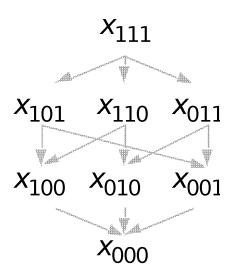


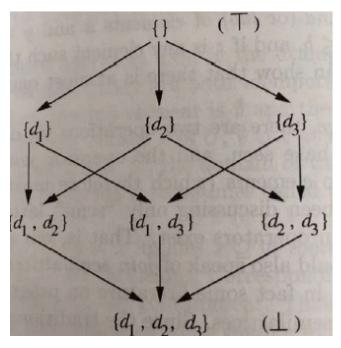
- Top T such that: $x \wedge T = x$
- Bottom \perp such that: $\mathbf{x} \land \perp = \perp$
- Values and meet operator in a data flow problem define a semi-lattice:
 - there exists a T, but not necessarily a \perp .
- x, y are ordered: $x \le y$ then $x \land y = x$ (y -> x in diagram)
- what if x and y are not ordered?
 - $x \land y \le x, x \land y \le y$, and if $w \le x, w \le y$, then $w \le x \land y$

One vs. All Variables/Definitions

• Lattice for each variable: e.g. intersection

• Lattice for three variables:





Descending Chain

- Definition
 - The height of a lattice is the largest number of > relations that will fit in a descending chain.

 $x_0 > x_1 > x_2 > \dots$

• Height of values in reaching definitions?

Height n – number of definitions

- Important property: finite descending chain
- Can an infinite lattice have a finite descending chain? yes
- Example: Constant Propagation/Folding
 - To determine if a variable is a constant
- Data values
 - undef, ... -1, 0, 1, 2, ..., not-a-constant

Transfer Functions

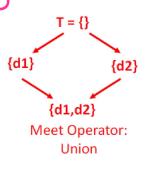
- Basic Properties $f: V \rightarrow V$
 - Has an identity function
 - There exists an f such that f (x) = x, for all x.
 - Closed under composition
 - if $f_1, f_2 \in F$, then $f_1 \cdot f_2 \in F$

Monotonicity

- A framework (F, V, \wedge) is monotone if and only if
 - $x \le y$ implies $f(x) \le f(y)$
 - i.e. a "smaller or equal" input to the same function will always give a "smaller or equal" output
- Equivalently, a framework (*F*, *V*, \wedge) is monotone if and only if
 - $f(x \land y) \leq f(x) \land f(y)$
 - i.e. merge input, then apply *f* is **small than or equal to** apply the transfer function individually and then merge the result

Example

- Reaching definitions: $f(x) = Gen \cup (x Kill), \land = \cup$
 - Definition 1:
 - $x_1 \le x_2$, Gen U $(x_1 Kill) \le$ Gen U $(x_2 Kill)$
 - Definition 2:
 - (Gen U (x₁ Kill)) U (Gen U (x₂ Kill)) = (Gen U ((x₁ U x₂) - Kill))



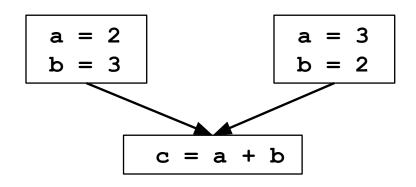
 $[\mathbf{x}_1 \le \mathbf{x}_2 \text{ iff } \mathbf{x}_2 \to \mathbf{x}_1]$

• Note: Monotone framework does not mean that f(x) ≤ x

- e.g., reaching definition for two definitions in program
- suppose: f_x : Gen_x = { d_1, d_2 }; Kill_x = {}
- If input(second iteration) ≤ input(first iteration)
 - result(second iteration) ≤ result(first iteration)

Distributivity

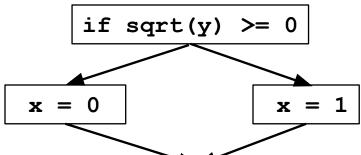
- A framework (*F, V,* \wedge) is **distributive** if and only if
 - $f(x \land y) = f(x) \land f(y)$
 - i.e. merge input, then apply f is **equal to** apply the transfer function individually then merge result
- Example: Constant Propagation is NOT distributive



Data Flow Analysis

- Definition
 - Let $f_{i'}$..., $f_m : \in F$, where f_i is the transfer function for node *i*
 - $f_p^{T} = f_{nk}$ \cdots f_{n1} , where **p** is a path through nodes n_1, \dots, n_k
 - f_p = identify function, if p is an empty path
- Ideal data flow answer:
 - For each node n:

 $\bigwedge f_{p_i}$ (T), for all possibly executed paths p_i reaching n.



• But determining all possibly executed paths is undecidable

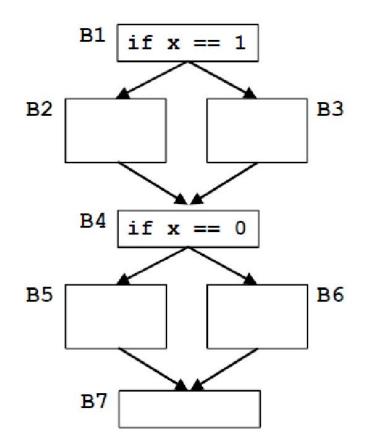
Meet-Over-Paths (MOP)

- Error in the conservative direction
- Meet-Over-Paths (MOP):
 - For each node *n*:

 $MOP(n) = \bigwedge f_{pi}(T)$, for all paths p_i reaching n

- a path exists as long there is an edge in the code
- consider more paths than necessary
- MOP = Perfect-Solution \land Solution-to-Unexecuted-Paths
- MOP ≤ Perfect-Solution
- Potentially more constrained, solution is small
 - hence *conservative*
- It is not **safe** to be > Perfect-Solution!
- Desirable solution: as close to MOP as possible

MOP Example



Assume: B2 & B3 do not update x

Ideal: Considers only 2 paths B1-B2-B4-B6-B7 (i.e., x=1) B1-B3-B4-B5-B7 (i.e., x=0)

MOP: Also considers unexecuted paths B1-B2-B4-B5-B7 B1-B3-B4-B6-B7

Solving Data Flow Equations

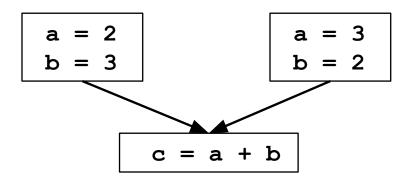
- Example: Reaching definitions
 - out[entry] = {}
 - Values = {subsets of definitions}
 - Meet operator: \cup
 - in[b] = ∪ out[p], for all predecessors p of b
 - Transfer functions: $out[b] = gen_b \cup (in[b] kill_b)$
- Any solution satisfying equations = Fixed Point Solution (FP)
- Iterative algorithm
 - initializes out[b] to {}
 - if converges, then it computes Maximum Fixed Point (MFP):
 - MFP is the largest of all solutions to equations
- Properties:
 - $FP \le MFP \le MOP \le Perfect$ -solution
 - FP, MFP are safe
 - $in(b) \leq MOP(b)$

Partial Correctness of Algorithm

- If data flow framework is monotone, then if the algorithm converges, IN[b] ≤ MOP[b]
- Proof: Induction on path lengths
 - Define IN[entry] = OUT[entry] and transfer function of entry = Identity function
 - Base case: path of length 0
 - Proper initialization of IN[entry]
 - If true for path of length k, $p_k = (n_1, ..., n_k)$, then true for path of length k+1: $p_{k+1} = (n_1, ..., n_{k+1})$
 - Assume: $IN[n_k] \le f_{nk-1}(f_{nk-2}(...f_{n1}(IN[entry])))$
 - $IN[n_{k+1}] = OUT[n_k] \land ...$ $\leq OUT[n_k]$ $\leq f_{nk} (IN[n_k])$ $\leq f_{nk-1} (f_{nk-2} (... f_{n1} (IN[entry])))$

Precision

 If data flow framework is distributive, then if the algorithm converges, IN[b] = MOP[b]



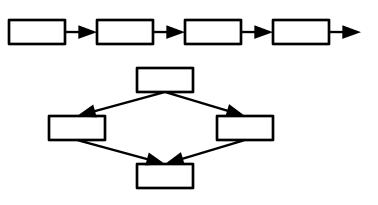
Monotone but not distributive: behaves as if there are additional paths

Additional Property to Guarantee Convergence

- Data flow framework (monotone) converges if there is a finite descending chain
- For each variable IN[b], OUT[b], consider the sequence of values set to each variable across iterations:
 - if sequence for in[b] is monotonically decreasing
 - sequence for out[b] is monotonically decreasing
 - (out[b] initialized to T)
 - if sequence for out[b] is monotonically decreasing
 - sequence of in[b] is monotonically decreasing

Speed of Convergence

Speed of convergence depends on order of node visits



 Reverse "direction" for backward flow problems

Reverse Postorder

```
• Step 1: depth-first post order
	main() {
		count = 1;
		Visit(root);
	}
		Visit(n) {
		for each successor s that has not been visited
			Visit(s);
		PostOrder(n) = count;
			count = count+1;
	}
```

• Step 2: reverse order

```
For each node i
rPostOrder = NumNodes - PostOrder(i)
```

Depth-First Iterative Algorithm (forward)

```
input: control flow graph CFG = (N, E, Entry, Exit)
/* Initialize */
    out[entry] = init value
    For all nodes i
       out[i] = T
    Change = True
/* iterate */
    While Change {
       Change = False
       For each node i in rPostOrder {
          in[i] = \langle (out[p]), for all predecessors p of i
          oldout = out[i]
           out[i] = f_i(in[i])
          if oldout # out[i]
             Change = True
       }
    }
```

Speed of Convergence

- If cycles do not add information
 - information can flow in one pass down a series of nodes of increasing order number:
 - e.g., 1 -> 4 -> 5 -> 7 -> 2 -> 4 ...
 - passes determined by number of back edges in the path
 - essentially the nesting depth of the graph
 - Number of iterations = number of back edges in any acyclic path + 2
 - (2 are necessary even if there are no cycles)
- What is the depth?
 - corresponds to depth of intervals for "reducible" graphs
 - in real programs: average of 2.75

A Check List for Data Flow Problems

• Semi-lattice

- set of values
- meet operator
- top, bottom
- finite descending chain?

• Transfer functions

- function of each basic block
- monotone
- distributive?

• Algorithm

- initialization step (entry/exit, other nodes)
- visit order: rPostOrder
- depth of the graph

Conclusions

- Dataflow analysis examples
 - Reaching definitions
 - Live variables
- Dataflow formation definition
 - Meet operator
 - Transfer functions
 - Correctness, Precision, Convergence
 - Efficiency

CSC D70: Compiler Optimization Dataflow Analysis

Prof. Gennady Pekhimenko University of Toronto Winter 2020

The content of this lecture is adapted from the lectures of Todd Mowry and Phillip Gibbons